Papers
Topics
Authors
Recent
2000 character limit reached

Derived Kn"orrer periodicity and Orlov's theorem for gauged Landau-Ginzburg models

Published 15 Feb 2016 in math.AG | (1602.04769v3)

Abstract: We prove a Kn"orrer periodicity type equivalence between derived factorization categories of gauged LG models, which is an analogy of a theorem proved by Shipman and Isik independently. As an application, we obtain a gauged LG version of Orlov's theorem describing a relationship between categories of graded matrix factorizations and derived categories of hypersurfaces in projective spaces, by combining the above Kn"orrer periodicity type equivalence and the theory of variations of GIT quotients due to Ballard, Favero and Katzarkov.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.