Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Wavelets via Sparse Cuts: Extended Version (1602.03320v5)

Published 10 Feb 2016 in cs.DS and cs.SI

Abstract: Modeling information that resides on vertices of large graphs is a key problem in several real-life applications, ranging from social networks to the Internet-of-things. Signal Processing on Graphs and, in particular, graph wavelets can exploit the intrinsic smoothness of these datasets in order to represent them in a both compact and accurate manner. However, how to discover wavelet bases that capture the geometry of the data with respect to the signal as well as the graph structure remains an open question. In this paper, we study the problem of computing graph wavelet bases via sparse cuts in order to produce low-dimensional encodings of data-driven bases. This problem is connected to known hard problems in graph theory (e.g. multiway cuts) and thus requires an efficient heuristic. We formulate the basis discovery task as a relaxation of a vector optimization problem, which leads to an elegant solution as a regularized eigenvalue computation. Moreover, we propose several strategies in order to scale our algorithm to large graphs. Experimental results show that the proposed algorithm can effectively encode both the graph structure and signal, producing compressed and accurate representations for vertex values in a wide range of datasets (e.g. sensor and gene networks) and significantly outperforming the best baseline.

Citations (7)

Summary

We haven't generated a summary for this paper yet.