Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

Analysis of a high order unfitted finite element method for elliptic interface problems (1602.02970v3)

Published 9 Feb 2016 in math.NA

Abstract: In the context of unfitted finite element discretizations the realization of high order methods is challenging due to the fact that the geometry approximation has to be sufficiently accurate. We consider a new unfitted finite element method which achieves a high order approximation of the geometry for domains which are implicitly described by smooth level set functions. The method is based on a parametric mapping which transforms a piecewise planar interface (or surface) reconstruction to a high order approximation. Both components, the piecewise planar interface reconstruction and the parametric mapping are easy to implement. In this paper we present an a priori error analysis of the method applied to an interface problem. The analysis reveals optimal order error bounds for the geometry approximation and for the finite element approximation, for arbitrary high order discretization. The theoretical results are confirmed in numerical experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube