Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Electrodynamics and spacetime geometry I: Foundations (1602.01492v1)

Published 3 Feb 2016 in gr-qc and hep-th

Abstract: We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We briefly review the foundations of electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations which introduce the spacetime metric. We then proceed with the tensor formulation by assuming local, linear, homogeneous and isotropic constitutive relations, and explore the physical, observable consequences of Maxwell's equations in curved spacetime. The field equations, charge conservation and the Lorentz force are explicitly expressed in general (pseudo) Riemanian manifolds. The generalized Gauss and Maxwell-Amp`{e}re laws, as well as the wave equations, reveal potentially interesting astrophysical applications. In all cases new electromagnetic couplings and related phenomena are induced by spacetime curvature. The implications and possible applications for gravity waves detection are briefly addressed. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

Summary

We haven't generated a summary for this paper yet.