Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case $0<q<1\le p<\infty$ (1602.00820v1)
Abstract: Let $U:[0,\infty)2 \to [0,\infty)$ be a~measurable kernel satisfying: (i) $U(x,y)$ is nonincreasing in $x$ and nondecreasing in $y$; (ii) there exists a~constant $\theta>0$ such that $U(x,z) \le \theta\left( U(x,y)+U(y,z) \right)$ for all $0\le x<y<z<\infty$; (iii) $U(0,y)\>0$ for all $y>0$. Let $0<q<1< p <\infty$. We prove that the weighted inequality [ \left( \int_0\infty \left( \int_0t f(x)U(x,t) dx \right)q w(t) dt \right)\frac 1q \le C \left( \int_0\infty fp(t)v(t)dt \right)\frac 1p ] holds for all nonnegative measurable functions $f$ on $(0,\infty)$ if and only if [ \left( \int_0\infty \left( \int_t\infty w(x)dx \right)\frac{r}{p} w(t) \left( \int_0t U{p'}(z,t)v{1-p'}(z) dy \right)\frac{r}{p'} dt \right)\frac 1r <\infty ] and [ \left( \int_0\infty \left( \int_t\infty w(x) Uq(t,x) dx \right)\frac{r}{p} w(t) \sup_{z\in(0,t)} Uq(z,t)\left( \int_0z v{1-p'}(s) ds \right)\frac{r}{p'} dt \right)\frac 1r <\infty, ] where $p':=\frac{p}{p-1}$ and $r:=\frac{pq}{p-q}$. Analogous conditions for the case $p=1$ and for the dual version of the inequality are also presented.