Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fully discrete BEM-FEM scheme for transient acoustic waves (1601.08248v1)

Published 29 Jan 2016 in math.NA and math.AP

Abstract: We study a symmetric BEM-FEM coupling scheme for the scattering of transient acoustic waves by bounded inhomogeneous anisotropic obstacles in a homogeneous field. An incident wave in free space interacts with the obstacles and produces a combination of transmission and scattering. The transmitted part of the wave is discretized in space by finite elements while the scattered wave is reduced to two fields defined on the boundary of the obstacles and is discretized in space with boundary elements. We choose a coupling formulation that leads to a symmetric system of integro-differential equations. The retarded boundary integral equations are discretized in time by Convolution Quadrature, and the interior field is discretized in time with the trapezoidal rule. We show that the scattering problem generates a C_0 group of isometries in a Hilbert space, and use associated estimates to derive stability and convergence results. We provide numerical experiments and simulations to validate our results and demonstrate the flexibility of the method.

Summary

We haven't generated a summary for this paper yet.