Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Information-Theoretic Lower Bounds for Recovery of Diffusion Network Structures (1601.07932v2)

Published 28 Jan 2016 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: We study the information-theoretic lower bound of the sample complexity of the correct recovery of diffusion network structures. We introduce a discrete-time diffusion model based on the Independent Cascade model for which we obtain a lower bound of order $\Omega(k \log p)$, for directed graphs of $p$ nodes, and at most $k$ parents per node. Next, we introduce a continuous-time diffusion model, for which a similar lower bound of order $\Omega(k \log p)$ is obtained. Our results show that the algorithm of Pouget-Abadie et al. is statistically optimal for the discrete-time regime. Our work also opens the question of whether it is possible to devise an optimal algorithm for the continuous-time regime.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.