Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From isolated subgroups to generic permutation representations (1601.07538v1)

Published 27 Jan 2016 in math.GR

Abstract: Let $G$ be a countable group, $\operatorname{Sub}(G)$ the (compact, metric) space of all subgroups of $G$ with the Chabauty topology and $\operatorname{Is}(G) \subset \operatorname{Sub}(G)$ the collection of isolated points. We denote by $X!$ the (Polish) group of all permutations of a countable set $X$. Then the following properties are equivalent: (i) $\operatorname{Is}(G)$ is dense in $\operatorname{Sub}(G)$, (ii) $G$ admits a "generic permutation representation". Namely there exists some $\tau* \in \operatorname{Hom}(G,X!)$ such that the collection of permutation representations ${\phi \in \operatorname{Hom}(G,X!) \ | \ \phi {\text{is permutation isomorphic to}} \tau*}$ is co-meager in $\operatorname{Hom}(G,X!)$. We call groups satisfying these properties solitary. Examples of solitary groups include finitely generated LERF groups and groups with countably many subgroups.

Summary

We haven't generated a summary for this paper yet.