Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A class of gcd-graphs having Perfect State Transfer (1601.07398v1)

Published 27 Jan 2016 in math.CO

Abstract: Let $G$ be a graph with adjacency matrix $A$. The transition matrix corresponding to $G$ is defined by $H(t):=\exp{\left(itA\right)}$, $t\in\Rl$. The graph $G$ is said to have perfect state transfer (PST) from a vertex $u$ to another vertex $v$, if there exist $\tau\in\Rl$ such that the $uv$-th entry of $H(\tau)$ has unit modulus. The graph $G$ is said to be periodic at $\tau\in\Rl$ if there exist $\gamma\in\Cl$ with $|\gamma|=1$ such that $H(\tau)=\gamma I$, where $I$ is the identity matrix. A $\mathit{gcd}$-graph is a Cayley graph over a finite abelian group defined by greatest common divisors. In this paper, we construct classes of $\mathit{gcd}$-graphs having periodicity and perfect state transfer.

Summary

We haven't generated a summary for this paper yet.