Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

eHDG:An Exponentially Convergent Iterative Solver for HDG Discretizations of Hyperbolic Partial Differential Equations (1601.06681v2)

Published 25 Jan 2016 in math.NA and cs.NA

Abstract: We present a scalable and efficient iterative solver for high-order hybridized discontinuous Galerkin (HDG) discretizations of hyperbolic partial differential equations. It is an interplay between domain decomposition methods and HDG discretizations. In particular, the method is a fixed-point approach that requires only independent element-by-element local solves in each iteration. As such, it is well-suited for current and future computing systems with massive concurrencies. We rigorously show that the proposed method is exponentially convergent in the number of iterations for transport and linearized shallow water equations. Furthermore, the convergence is independent of the solution order. Various 2D and 3D numerical results for steady and time-dependent problems are presented to verify our theoretical findings.

Summary

We haven't generated a summary for this paper yet.