Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shapley Values in Weighted Voting Games with Random Weights (1601.06223v1)

Published 23 Jan 2016 in cs.GT

Abstract: We investigate the distribution of the well-studied Shapley--Shubik values in weighted voting games where the agents are stochastically determined. The Shapley--Shubik value measures the voting power of an agent, in typical collective decision making systems. While easy to estimate empirically given the parameters of a weighted voting game, the Shapley values are notoriously hard to reason about analytically. We propose a probabilistic approach in which the agent weights are drawn i.i.d. from some known exponentially decaying distribution. We provide a general closed-form characterization of the highest and lowest expected Shapley values in such a game, as a function of the parameters of the underlying distribution. To do so, we give a novel reinterpretation of the stochastic process that generates the Shapley variables as a renewal process. We demonstrate the use of our results on the uniform and exponential distributions. Furthermore, we show the strength of our theoretical predictions on several synthetic datasets.

Citations (5)

Summary

We haven't generated a summary for this paper yet.