Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A bifibrational reconstruction of Lawvere's presheaf hyperdoctrine (1601.06098v2)

Published 22 Jan 2016 in cs.LO, math.CT, and math.LO

Abstract: Combining insights from the study of type refinement systems and of monoidal closed chiralities, we show how to reconstruct Lawvere's hyperdoctrine of presheaves using a full and faithful embedding into a monoidal closed bifibration living now over the compact closed category of small categories and distributors. Besides revealing dualities which are not immediately apparent in the traditional presentation of the presheaf hyperdoctrine, this reconstruction leads us to an axiomatic treatment of directed equality predicates (modelled by hom presheaves), realizing a vision initially set out by Lawvere (1970). It also leads to a simple calculus of string diagrams (representing presheaves) that is highly reminiscent of C. S. Peirce's existential graphs for predicate logic, refining an earlier interpretation of existential graphs in terms of Boolean hyperdoctrines by Brady and Trimble. Finally, we illustrate how this work extends to a bifibrational setting a number of fundamental ideas of linear logic.

Citations (19)

Summary

We haven't generated a summary for this paper yet.