Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations (1601.05756v1)

Published 21 Jan 2016 in math.PR and math.NA

Abstract: This article proposes and analyzes explicit and easily implementable temporal numerical approximation schemes for additive noise-driven stochastic partial differential equations (SPDEs) with polynomial nonlinearities such as, e.g., stochastic Ginzburg-Landau equations. We prove essentially sharp strong convergence rates for the considered approximation schemes. Our analysis is carried out for abstract stochastic evolution equations on separable Banach and Hilbert spaces including the above mentioned SPDEs as special cases. We also illustrate our strong convergence rate results by means of a numerical simulation in Matlab.

Summary

We haven't generated a summary for this paper yet.