2000 character limit reached
Dynamics of a Nonlocal Dispersal SIS Epidemic Model (1601.05188v1)
Published 20 Jan 2016 in math.AP
Abstract: This paper is concerned with a nonlocal dispersal susceptible-infected-susceptible (SIS) epidemic model with Dirichlet boundary condition, where the rates of disease transmission and recovery are assumed to be spatially heterogeneous. We introduce a basic reproduction number $R_0$ and establish threshold-type results on the global dynamic in terms of $R_0$. More specifically, we show that if the basic reproduction number is less than one, then the disease will be extinct, and if the basic reproduction number is larger than one, then the disease will persist. Particularly, our results imply that the nonlocal dispersal of the infected individuals may suppress the spread of the disease even though in a high-risk domain.