Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Inference of Twitter Users' Age based on What They Follow (1601.04621v2)

Published 18 Jan 2016 in cs.SI and stat.ML

Abstract: Twitter provides an open and rich source of data for studying human behaviour at scale and is widely used in social and network sciences. However, a major criticism of Twitter data is that demographic information is largely absent. Enhancing Twitter data with user ages would advance our ability to study social network structures, information flows and the spread of contagions. Approaches toward age detection of Twitter users typically focus on specific properties of tweets, e.g., linguistic features, which are language dependent. In this paper, we devise a language-independent methodology for determining the age of Twitter users from data that is native to the Twitter ecosystem. The key idea is to use a Bayesian framework to generalise ground-truth age information from a few Twitter users to the entire network based on what/whom they follow. Our approach scales to inferring the age of 700 million Twitter accounts with high accuracy.

Citations (22)

Summary

We haven't generated a summary for this paper yet.