Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral identification of networks using sparse measurements (1601.04364v2)

Published 17 Jan 2016 in math.DS and cs.SY

Abstract: We propose a new method to recover global information about a network of interconnected dynamical systems based on observations made at a small number (possibly one) of its nodes. In contrast to classical identification of full graph topology, we focus on the identification of the spectral graph-theoretic properties of the network, a framework that we call spectral network identification. The main theoretical results connect the spectral properties of the network to the spectral properties of the dynamics, which are well-defined in the context of the so-called Koopman operator and can be extracted from data through the Dynamic Mode Decomposition algorithm. These results are obtained for networks of diffusively-coupled units that admit a stable equilibrium state. For large networks, a statistical approach is considered, which focuses on spectral moments of the network and is well-suited to the case of heterogeneous populations. Our framework provides efficient numerical methods to infer global information on the network from sparse local measurements at a few nodes. Numerical simulations show for instance the possibility of detecting the mean number of connections or the addition of a new vertex using measurements made at one single node, that need not be representative of the other nodes' properties.

Citations (27)

Summary

We haven't generated a summary for this paper yet.