Papers
Topics
Authors
Recent
2000 character limit reached

Genus zero Gromov-Witten axioms via Kuranishi atlases

Published 15 Jan 2016 in math.SG | (1601.04048v1)

Abstract: A Kuranishi atlas is a structure used to build a virtual fundamental class on moduli spaces of $J$-holomorphic curves. They were introduced by McDuff and Wehrheim to resolve some of the challenges in this field. This paper completes the construction of genus zero Gromov-Witten invariants using Kuranishi atlases and proves the Gromov-Witten axioms of Kontsevich and Manin. To do so, we introduce the notion of a transverse subatlas, a useful tool for working with Kuranishi atlases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.