Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private Oblivious RAM (1601.03378v5)

Published 13 Jan 2016 in cs.CR

Abstract: In this work, we investigate if statistical privacy can enhance the performance of ORAM mechanisms while providing rigorous privacy guarantees. We propose a formal and rigorous framework for developing ORAM protocols with statistical security viz., a differentially private ORAM (DP-ORAM). We present Root ORAM, a family of DP-ORAMs that provide a tunable, multi-dimensional trade-off between the desired bandwidth overhead, local storage and system security. We theoretically analyze Root ORAM to quantify both its security and performance. We experimentally demonstrate the benefits of Root ORAM and find that (1) Root ORAM can reduce local storage overhead by about 2x for a reasonable values of privacy budget, significantly enhancing performance in memory limited platforms such as trusted execution environments, and (2) Root ORAM allows tunable trade-offs between bandwidth, storage, and privacy, reducing bandwidth overheads by up to 2x-10x (at the cost of increased storage/statistical privacy), enabling significant reductions in ORAM access latencies for cloud environments. We also analyze the privacy guarantees of DP-ORAMs through the lens of information theoretic metrics of Shannon entropy and Min-entropy [16]. Finally, Root ORAM is ideally suited for applications which have a similar access pattern, and we showcase its utility via the application of Private Information Retrieval.

Citations (13)

Summary

We haven't generated a summary for this paper yet.