Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayes-Optimal Effort Allocation in Crowdsourcing: Bounds and Index Policies (1512.09204v1)

Published 31 Dec 2015 in cs.LG, cs.AI, and stat.ML

Abstract: We consider effort allocation in crowdsourcing, where we wish to assign labeling tasks to imperfect homogeneous crowd workers to maximize overall accuracy in a continuous-time Bayesian setting, subject to budget and time constraints. The Bayes-optimal policy for this problem is the solution to a partially observable Markov decision process, but the curse of dimensionality renders the computation infeasible. Based on the Lagrangian Relaxation technique in Adelman & Mersereau (2008), we provide a computationally tractable instance-specific upper bound on the value of this Bayes-optimal policy, which can in turn be used to bound the optimality gap of any other sub-optimal policy. In an approach similar in spirit to the Whittle index for restless multiarmed bandits, we provide an index policy for effort allocation in crowdsourcing and demonstrate numerically that it outperforms other stateof- arts and performs close to optimal solution.

Citations (1)

Summary

We haven't generated a summary for this paper yet.