Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Ramanujan subspace pursuit for signal periodic decomposition (1512.08112v1)

Published 26 Dec 2015 in cs.IT and math.IT

Abstract: The period estimation and periodic decomposition of a signal are the long-standing problems in the field of signal processing and biomolecular sequence analysis. To address such problems, we introduce the Ramanujan subspace pursuit (RSP) based on the Ramanujan subspace. As a greedy iterative algorithm, the RSP can uniquely decompose any signal into a sum of exactly periodic components, by selecting and removing the most dominant periodic component from the residual signal in each iteration. In the RSP, a novel periodicity metric is derived based on the energy of the exactly periodic component obtained by orthogonally projecting the residual signal into the Ramanujan subspace, and is then used to select the most dominant periodic component in each iteration. To reduce the computational cost of the RSP, we also propose the fast RSP (FRSP) based on the relationship between the periodic subspace and the Ramanujan subspace, and based on the maximum likelihood estimation of the energy of the periodic component in the periodic subspace. The fast RSP has a lower computational cost and can decompose a signal of length $N$ into the sum of $K$ exactly periodic components in $ \mathcal{O}(K N\log N)$. In addition, our results show that the RSP outperforms the current algorithms for period estimation.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube