Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Chebyshev knot diagrams (1512.07766v2)

Published 24 Dec 2015 in cs.SC

Abstract: A Chebyshev curve $\mathcal{C}(a,b,c,\phi)$ has a parametrization of the form$ x(t)=T_a(t)$; \ $y(t)=T_b(t)$; $z(t)= T_c(t + \phi)$, where $a,b,c$are integers, $T_n(t)$ is the Chebyshev polynomialof degree $n$ and $\phi \in \mathbb{R}$. When $\mathcal{C}(a,b,c,\phi)$ is nonsingular,it defines a polynomial knot. We determine all possible knot diagrams when $\phi$ varies. Let $a,b,c$ be integers, $a$ is odd, $(a,b)=1$, we show that one can list all possible knots $\mathcal{C}(a,b,c,\phi)$ in$\tilde{\mathcal{O}}(n2)$ bit operations, with $n=abc$.

Summary

We haven't generated a summary for this paper yet.