Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

A note on set-theoretic solutions of the Yang-Baxter equation (1512.06642v4)

Published 21 Dec 2015 in math.RA

Abstract: This paper shows that every finite non-degenerate involutive set theoretic solution (X,r) of the Yang-Baxter equation whose symmetric group has cardinality which a cube-free number is a multipermutation solution. Some properties of finite braces are also investigated (Theorems 3, 5 and 11). It is also shown that if A is a left brace whose cardinality is an odd number and (-a) b=-(ab) for all a, b A, then A is a two-sided brace and hence a Jacobson radical ring. It is also observed that the semidirect product and the wreath product of braces of a finite multipermutation level is a brace of a finite multipermutation level.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)