Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel principal component analysis network for image classification (1512.06337v1)

Published 20 Dec 2015 in cs.LG and cs.CV

Abstract: In order to classify the nonlinear feature with linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network (KPCANet) is proposed. First, mapping the data into higher space with kernel principal component analysis to make the data linearly separable. Then building a two-layer KPCANet to obtain the principal components of image. Finally, classifying the principal components with linearly classifier. Experimental results show that the proposed KPCANet is effective in face recognition, object recognition and hand-writing digits recognition, it also outperforms principal component analysis network (PCANet) generally as well. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.

Citations (11)

Summary

We haven't generated a summary for this paper yet.