Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost Engel finite and profinite groups (1512.06097v2)

Published 18 Dec 2015 in math.GR

Abstract: Let $g$ be an element of a group $G$. For a positive integer $n$, let $E_n(g)$ be the subgroup generated by all commutators $[...[[x,g],g],\dots ,g]$ over $x\in G$, where $g$ is repeated $n$ times. We prove that if $G$ is a profinite group such that for every $g\in G$ there is $n=n(g)$ such that $E_n(g)$ is finite, then $G$ has a finite normal subgroup $N$ such that $G/N$ is locally nilpotent. The proof uses the Wilson--Zelmanov theorem saying that Engel profinite groups are locally nilpotent. In the case of a finite group $G$, we prove that if, for some $n$, $|E_n(g)|\leq m$ for all $g\in G$, then the order of the nilpotent residual $\gamma _{\infty}(G)$ is bounded in terms of $m$.

Summary

We haven't generated a summary for this paper yet.