Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Gene Regulatory Network Using An Evolutionary Multi-Objective Method (1512.05055v1)

Published 16 Dec 2015 in cs.CE, cs.NE, and q-bio.QM

Abstract: Inference of gene regulatory networks (GRNs) based on experimental data is a challenging task in bioinformatics. In this paper, we present a bi-objective minimization model (BoMM) for inference of GRNs, where one objective is the fitting error of derivatives, and the other is the number of connections in the network. To solve the BoMM efficiently, we propose a multi-objective evolutionary algorithm (MOEA), and utilize the separable parameter estimation method (SPEM) decoupling the ordinary differential equation (ODE) system. Then, the Akaike Information Criterion (AIC) is employed to select one inference result from the obtained Pareto set. Taking the S-system as the investigated GRN model, our method can properly identify the topologies and parameter values of benchmark systems. There is no need to preset problem-dependent parameter values to obtain appropriate results, and thus, our method could be applicable to inference of various GRNs models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.