Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing minimal interpolation bases (1512.03503v2)

Published 11 Dec 2015 in cs.SC, cs.IT, and math.IT

Abstract: We consider the problem of computing univariate polynomial matrices over a field that represent minimal solution bases for a general interpolation problem, some forms of which are the vector M-Pad\'e approximation problem in [Van Barel and Bultheel, Numerical Algorithms 3, 1992] and the rational interpolation problem in [Beckermann and Labahn, SIAM J. Matrix Anal. Appl. 22, 2000]. Particular instances of this problem include the bivariate interpolation steps of Guruswami-Sudan hard-decision and K\"otter-Vardy soft-decision decodings of Reed-Solomon codes, the multivariate interpolation step of list-decoding of folded Reed-Solomon codes, and Hermite-Pad\'e approximation. In the mentioned references, the problem is solved using iterative algorithms based on recurrence relations. Here, we discuss a fast, divide-and-conquer version of this recurrence, taking advantage of fast matrix computations over the scalars and over the polynomials. This new algorithm is deterministic, and for computing shifted minimal bases of relations between $m$ vectors of size $\sigma$ it uses $O~( m{\omega-1} (\sigma + |s|) )$ field operations, where $\omega$ is the exponent of matrix multiplication, and $|s|$ is the sum of the entries of the input shift $s$, with $\min(s) = 0$. This complexity bound improves in particular on earlier algorithms in the case of bivariate interpolation for soft decoding, while matching fastest existing algorithms for simultaneous Hermite-Pad\'e approximation.

Citations (33)

Summary

We haven't generated a summary for this paper yet.