Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting Caching to Audience Retention Rate: Which Video Chunk to Store? (1512.03274v1)

Published 10 Dec 2015 in cs.NI

Abstract: Rarely do users watch online contents entirely. We study how to take this into account to improve the performance of cache systems for video-on-demand and video-sharing platforms in terms of traffic reduction on the core network. We exploit the notion of "Audience retention rate", introduced by mainstream online content platforms and measuring the popularity of different parts of the same video content. We first characterize the performance limits of a cache able to store parts of videos, when the popularity and the audience retention rate of each video are available to the cache manager. We then relax the assumption of known popularity and we propose a LRU (Least Recently Used) cache replacement policy that operates on the first chunks of each video. We characterize its performance by extending the well-known Che's approximation to this case. We prove that, by refining the chunk granularity, the chunk-LRU policy increases its performance. It is shown numerically that even for a small number of chunks (N=20), the gains of chunk-LRU are still significant in comparison to standard LRU policy that caches entire files, and they are almost optimal.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lorenzo Maggi (19 papers)
  2. Lazaros Gkatzikis (6 papers)
  3. Georgios Paschos (19 papers)
  4. Jérémie Leguay (26 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.