Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient inclusion of total variation type priors in quantitative photoacoustic tomography (1512.02796v2)

Published 9 Dec 2015 in math.NA

Abstract: Quantitative photoacoustic tomography is an emerging imaging technique aimed at estimating the distribution of optical parameters inside tissues from photoacoustic images, which are formed by combining optical information and ultrasonic propagation. This optical parameter estimation problem is ill-posed and needs to be approached within the framework of inverse problems. Photoacoustic images are three-dimensional and high-resolution. Furthermore, high-resolution reconstructions of the optical parameters are targeted. Therefore, in order to provide a practical method for quantitative photoacoustic tomography, the inversion algorithm needs to be able to perform successfully with problems of prominent size. In this work, an efficient approach for the inverse problem of quantitative photoacoustic tomography is proposed, assuming an edge-preferring prior for the optical parameters. The method is based on iteratively combining priorconditioned LSQR with a lagged diffusivity step and a linearisation of the measurement model, with the needed multiplications by Jacobians performed in a matrix-free manner. The algorithm is tested with three-dimensional numerical simulations. The results show that the approach can be used to produce accurate and high quality estimates of absorption and diffusion in complex three-dimensional geometries with moderate computation time and cost.

Summary

We haven't generated a summary for this paper yet.