Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Weak Solutions of SDEs with Singular Time-Dependent Drift and Driven by Stable Processes (1512.02689v1)

Published 8 Dec 2015 in math.PR

Abstract: Let $d \ge 2$. In this paper, we study weak solutions for the following type of stochastic differential equation [ dX_{t}=dS_{t}+b(s+t, X_{t})dt, \quad X_{0}=x, ] where $(s,x)\in \mathbb{R}+ \times \mathbb{R}{d}$ is the initial starting point, $b: \mathbb{R}+ \times \mathbb{R}{d} \to \mathbb{R}{d}$ is measurable, and $S=(S_{t}){t \ge 0}$ is a $d$-dimensional $\alpha$-stable process with index $\alpha \in (1,2)$. We show that if the $\alpha$-stable process $S$ is non-degenerate and $b \in L{loc}{\infty}(\mathbb{R}_{+};L{\infty}(\mathbb{R}{d}))+ L_{loc}{q}(\mathbb{R}_{+};L{p}(\mathbb{R}{d}))$ for some $p,q>0$ with $d/ p+\alpha/q <\alpha-1$, then the above SDE has a unique weak solution for every starting point $(s,x)\in \mathbb{R}_+ \times \mathbb{R}{d}$.

Summary

We haven't generated a summary for this paper yet.