Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient and Provable Multi-Query Optimization (1512.02568v2)

Published 8 Dec 2015 in cs.DB

Abstract: Complex queries for massive data analysis jobs have become increasingly commonplace. Many such queries contain com- mon subexpressions, either within a single query or among multiple queries submitted as a batch. Conventional query optimizers do not exploit these subexpressions and produce sub-optimal plans. The problem of multi-query optimization (MQO) is to generate an optimal combined evaluation plan by computing common subexpressions once and reusing them. Exhaustive algorithms for MQO explore an O(nn) search space. Thus, this problem has primarily been tackled using various heuristic algorithms, without providing any theoretical guarantees on the quality of their solution. In this paper, instead of the conventional cost minimization problem, we treat the problem as maximizing a linear transformation of the cost function. We propose a greedy algorithm for this transformed formulation of the problem, which under weak, intuitive assumptions, provides an approximation factor guarantee for this formulation. We go on to show that this factor is optimal, unless P = NP. Another noteworthy point about our algorithm is that it can be easily incorporated into existing transformation-based optimizers. We finally propose optimizations which can be used to improve the efficiency of our algorithm.

Citations (19)

Summary

We haven't generated a summary for this paper yet.