Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On real typical ranks (1512.01853v1)

Published 6 Dec 2015 in math.AG and math.AC

Abstract: We study typical ranks with respect to a real variety $X$. Examples of such are tensor rank ($X$ is the Segre variety) and symmetric tensor rank ($X$ is the Veronese variety). We show that any rank between the minimal typical rank and the maximal typical rank is also typical. We investigate typical ranks of $n$-variate symmetric tensors of order $d$, or equivalently homogeneous polynomials of degree $d$ in $n$ variables, for small values of $n$ and $d$. We show that $4$ is the unique typical rank of real ternary cubics, and quaternary cubics have typical ranks $5$ and $6$ only. For ternary quartics we show that $6$ and $7$ are typical ranks and that all typical ranks are between $6$ and $8$. For ternary quintics we show that the typical ranks are between $7$ and $13$.

Summary

We haven't generated a summary for this paper yet.