Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing forensic evidence by computing belief functions (1512.01250v2)

Published 2 Dec 2015 in math.PR and cs.AI

Abstract: We first discuss certain problems with the classical probabilistic approach for assessing forensic evidence, in particular its inability to distinguish between lack of belief and disbelief, and its inability to model complete ignorance within a given population. We then discuss Shafer belief functions, a generalization of probability distributions, which can deal with both these objections. We use a calculus of belief functions which does not use the much criticized Dempster rule of combination, but only the very natural Dempster-Shafer conditioning. We then apply this calculus to some classical forensic problems like the various island problems and the problem of parental identification. If we impose no prior knowledge apart from assuming that the culprit or parent belongs to a given population (something which is possible in our setting), then our answers differ from the classical ones when uniform or other priors are imposed. We can actually retrieve the classical answers by imposing the relevant priors, so our setup can and should be interpreted as a generalization of the classical methodology, allowing more flexibility. We show how our calculus can be used to develop an analogue of Bayes' rule, with belief functions instead of classical probabilities. We also discuss consequences of our theory for legal practice.

Citations (8)

Summary

We haven't generated a summary for this paper yet.