Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable and Accurate Online Feature Selection for Big Data (1511.09263v4)

Published 30 Nov 2015 in cs.LG

Abstract: Feature selection is important in many big data applications. Two critical challenges closely associate with big data. Firstly, in many big data applications, the dimensionality is extremely high, in millions, and keeps growing. Secondly, big data applications call for highly scalable feature selection algorithms in an online manner such that each feature can be processed in a sequential scan. We present SAOLA, a Scalable and Accurate OnLine Approach for feature selection in this paper. With a theoretical analysis on bounds of the pairwise correlations between features, SAOLA employs novel pairwise comparison techniques and maintain a parsimonious model over time in an online manner. Furthermore, to deal with upcoming features that arrive by groups, we extend the SAOLA algorithm, and then propose a new group-SAOLA algorithm for online group feature selection. The group-SAOLA algorithm can online maintain a set of feature groups that is sparse at the levels of both groups and individual features simultaneously. An empirical study using a series of benchmark real data sets shows that our two algorithms, SAOLA and group-SAOLA, are scalable on data sets of extremely high dimensionality, and have superior performance over the state-of-the-art feature selection methods.

Citations (155)

Summary

We haven't generated a summary for this paper yet.