Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Probabilistic Inference via Word-Level Counting (1511.07663v3)

Published 24 Nov 2015 in cs.AI and cs.LO

Abstract: Hashing-based model counting has emerged as a promising approach for large-scale probabilistic inference on graphical models. A key component of these techniques is the use of xor-based 2-universal hash functions that operate over Boolean domains. Many counting problems arising in probabilistic inference are, however, naturally encoded over finite discrete domains. Techniques based on bit-level (or Boolean) hash functions require these problems to be propositionalized, making it impossible to leverage the remarkable progress made in SMT (Satisfiability Modulo Theory) solvers that can reason directly over words (or bit-vectors). In this work, we present the first approximate model counter that uses word-level hashing functions, and can directly leverage the power of sophisticated SMT solvers. Empirical evaluation over an extensive suite of benchmarks demonstrates the promise of the approach.

Citations (58)

Summary

We haven't generated a summary for this paper yet.