Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Resource Sharing Through GPU Virtualization on Accelerated High Performance Computing Systems (1511.07658v1)

Published 24 Nov 2015 in cs.DC and cs.PF

Abstract: The High Performance Computing (HPC) field is witnessing a widespread adoption of Graphics Processing Units (GPUs) as co-processors for conventional homogeneous clusters. The adoption of prevalent Single- Program Multiple-Data (SPMD) programming paradigm for GPU-based parallel processing brings in the challenge of resource underutilization, with the asymmetrical processor/co-processor distribution. In other words, under SPMD, balanced CPU/GPU distribution is required to ensure full resource utilization. In this paper, we propose a GPU resource virtualization approach to allow underutilized microprocessors to effi- ciently share the GPUs. We propose an efficient GPU sharing scenario achieved through GPU virtualization and analyze the performance potentials through execution models. We further present the implementation details of the virtualization infrastructure, followed by the experimental analyses. The results demonstrate considerable performance gains with GPU virtualization. Furthermore, the proposed solution enables full utilization of asymmetrical resources, through efficient GPU sharing among microprocessors, while incurring low overhead due to the added virtualization layer.

Citations (3)

Summary

We haven't generated a summary for this paper yet.