Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harnessing Mobile Phone Social Network Topology to Infer Users Demographic Attributes (1511.07337v1)

Published 23 Nov 2015 in cs.SI and physics.soc-ph

Abstract: We study the structure of the social graph of mobile phone users in the country of Mexico, with a focus on demographic attributes of the users (more specifically the users' age). We examine assortativity patterns in the graph, and observe a strong age homophily in the communications preferences. We propose a graph based algorithm for the prediction of the age of mobile phone users. The algorithm exploits the topology of the mobile phone network, together with a subset of known users ages (seeds), to infer the age of remaining users. We provide the details of the methodology, and show experimental results on a network GT with more than 70 million users. By carefully examining the topological relations of the seeds to the rest of the nodes in GT, we find topological metrics which have a direct influence on the performance of the algorithm. In particular we characterize subsets of users for which the accuracy of the algorithm is 62% when predicting between 4 age categories (whereas a pure random guess would yield an accuracy of 25%). We also show that we can use the probabilistic information computed by the algorithm to further increase its inference power to 72% on a significant subset of users.

Citations (19)

Summary

We haven't generated a summary for this paper yet.