Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Multi-Agent Continuous Transportation with Online Balanced Partitioning (1511.07209v2)

Published 23 Nov 2015 in cs.MA, cs.AI, and cs.RO

Abstract: We introduce the concept of continuous transportation task to the context of multi-agent systems. A continuous transportation task is one in which a multi-agent team visits a number of fixed locations, picks up objects, and delivers them to a final destination. The goal is to maximize the rate of transportation while the objects are replenished over time. Examples of problems that need continuous transportation are foraging, area sweeping, and first/last mile problem. Previous approaches typically neglect the interference and are highly dependent on communications among agents. Some also incorporate an additional reconnaissance agent to gather information. In this paper, we present a hybrid of centralized and distributed approaches that minimize the interference and communications in the multi-agent team without the need for a reconnaissance agent. We contribute two partitioning-transportation algorithms inspired by existing algorithms, and contribute one novel online partitioning-transportation algorithm with information gathering in the multi-agent team. Our algorithms have been implemented and tested extensively in the simulation. The results presented in this paper demonstrate the effectiveness of our algorithms that outperform the existing algorithms, even without any communications between the agents and without the presence of a reconnaissance agent.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.