Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization (1511.05432v3)

Published 17 Nov 2015 in stat.ML, cs.LG, and cs.NE

Abstract: We propose a general framework for increasing local stability of Artificial Neural Nets (ANNs) using Robust Optimization (RO). We achieve this through an alternating minimization-maximization procedure, in which the loss of the network is minimized over perturbed examples that are generated at each parameter update. We show that adversarial training of ANNs is in fact robustification of the network optimization, and that our proposed framework generalizes previous approaches for increasing local stability of ANNs. Experimental results reveal that our approach increases the robustness of the network to existing adversarial examples, while making it harder to generate new ones. Furthermore, our algorithm improves the accuracy of the network also on the original test data.

Citations (64)

Summary

We haven't generated a summary for this paper yet.