Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncovering Temporal Context for Video Question and Answering (1511.04670v1)

Published 15 Nov 2015 in cs.CV

Abstract: In this work, we introduce Video Question Answering in temporal domain to infer the past, describe the present and predict the future. We present an encoder-decoder approach using Recurrent Neural Networks to learn temporal structures of videos and introduce a dual-channel ranking loss to answer multiple-choice questions. We explore approaches for finer understanding of video content using question form of "fill-in-the-blank", and managed to collect 109,895 video clips with duration over 1,000 hours from TACoS, MPII-MD, MEDTest 14 datasets, while the corresponding 390,744 questions are generated from annotations. Extensive experiments demonstrate that our approach significantly outperforms the compared baselines.

Citations (44)

Summary

We haven't generated a summary for this paper yet.