Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on practical approximate projection schemes in signal space methods (1511.03763v1)

Published 12 Nov 2015 in math.NA, cs.IT, and math.IT

Abstract: Compressive sensing (CS) is a new technology which allows the acquisition of signals directly in compressed form, using far fewer measurements than traditional theory dictates. Recently, many so-called signal space methods have been developed to extend this body of work to signals sparse in arbitrary dictionaries rather than orthonormal bases. In doing so, CS can be utilized in a much broader array of practical settings. Often, such approaches often rely on the ability to optimally project a signal onto a small number of dictionary atoms. Such optimal, or even approximate, projections have been difficult to derive theoretically. Nonetheless, it has been observed experimentally that conventional CS approaches can be used for such projections, and still provide accurate signal recovery. In this letter, we summarize the empirical evidence and clearly demonstrate for what signal types certain CS methods may be used as approximate projections. In addition, we provide theoretical guarantees for such methods for certain sparse signal structures. Our theoretical results match those observed in experimental studies, and we thus establish both experimentally and theoretically that these CS methods can be used in this context. \end{abstract}

Citations (3)

Summary

We haven't generated a summary for this paper yet.