Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A tight relation between series-parallel graphs and Bipartite Distance Hereditary graphs (1511.03100v1)

Published 10 Nov 2015 in cs.DM and math.CO

Abstract: Bandelt and Mulder's structural characterization of Bipartite Distance Hereditary graphs asserts that such graphs can be built inductively starting from a single vertex and by repeatedly adding either pending vertices or twins (i.e., vertices with the same neighborhood as an existing one). Dirac and Duffin's structural characterization of 2-connected series-parallel graphs asserts that such graphs can be built inductively starting from a single edge by adding either edges in series or in parallel. In this paper we prove that the two constructions are the same construction when bipartite graphs are viewed as the fundamental graphs of a graphic matroid. We then apply the result to re-prove known results concerning bipartite distance hereditary graphs and series-parallel graphs, to characterize self-dual outer-planar graphs and, finally, to provide a new class of polynomially-solvable instances for the integer multi commodity flow of maximum value.

Summary

We haven't generated a summary for this paper yet.