Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction in the partial data Calderón problem on admissible manifolds (1511.02965v1)

Published 10 Nov 2015 in math.AP and math.DG

Abstract: We consider the problem of developing a method to reconstruct a potential $q$ from the partial data Dirichlet-to-Neumann map for the Schr\"odinger equation $(-\Delta_g+q)u=0$ on a fixed admissible manifold $(M,g)$. If the part of the boundary that is inaccessible for measurements satisfies a flatness condition in one direction, then we reconstruct the local attenuated geodesic ray transform of the one-dimensional Fourier transform of the potential $q$. This allows us to reconstruct $q$ locally, if the local (unattenuated) geodesic ray transform is constructively invertible. We also reconstruct $q$ globally, if $M$ satisfies certain concavity condition and if the global geodesic ray transform can be inverted constructively. These are reconstruction procedures for the corresponding uniqueness results given by Kenig and Salo. Moreover, the global reconstruction extends and improves the constructive proof of Nachman and Street in Euclidean setting. We derive a certain boundary integral equation which involves the given partial data and describes the traces of complex geometrical optics solutions. For construction of complex geometrical optics solutions, following Nachman and Street and improving their arguments, we use a new family of Green's functions for the Laplace-Beltrami operator and the corresponding single layer potentials. The constructive inversion problem for local or global geodesic ray transforms is one of the major topics of interest in integral geometry.

Summary

We haven't generated a summary for this paper yet.