Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Recurrent Neural Networks for Sequential Phenotype Prediction in Genomics (1511.02554v3)

Published 9 Nov 2015 in cs.NE, cs.CE, and cs.LG

Abstract: In analyzing of modern biological data, we are often dealing with ill-posed problems and missing data, mostly due to high dimensionality and multicollinearity of the dataset. In this paper, we have proposed a system based on matrix factorization (MF) and deep recurrent neural networks (DRNNs) for genotype imputation and phenotype sequences prediction. In order to model the long-term dependencies of phenotype data, the new Recurrent Linear Units (ReLU) learning strategy is utilized for the first time. The proposed model is implemented for parallel processing on central processing units (CPUs) and graphic processing units (GPUs). Performance of the proposed model is compared with other training algorithms for learning long-term dependencies as well as the sparse partial least square (SPLS) method on a set of genotype and phenotype data with 604 samples, 1980 single-nucleotide polymorphisms (SNPs), and two traits. The results demonstrate performance of the ReLU training algorithm in learning long-term dependencies in RNNs.

Citations (32)

Summary

We haven't generated a summary for this paper yet.