Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Poisson Inverse Problems by the Plug-and-Play scheme (1511.02500v1)

Published 8 Nov 2015 in cs.CV and math.OC

Abstract: The Anscombe transform offers an approximate conversion of a Poisson random variable into a Gaussian one. This transform is important and appealing, as it is easy to compute, and becomes handy in various inverse problems with Poisson noise contamination. Solution to such problems can be done by first applying the Anscombe transform, then applying a Gaussian-noise-oriented restoration algorithm of choice, and finally applying an inverse Anscombe transform. The appeal in this approach is due to the abundance of high-performance restoration algorithms designed for white additive Gaussian noise (we will refer to these hereafter as "Gaussian-solvers"). This process is known to work well for high SNR images, where the Anscombe transform provides a rather accurate approximation. When the noise level is high, the above path loses much of its effectiveness, and the common practice is to replace it with a direct treatment of the Poisson distribution. Naturally, with this we lose the ability to leverage on vastly available Gaussian-solvers. In this work we suggest a novel method for coupling Gaussian denoising algorithms to Poisson noisy inverse problems, which is based on a general approach termed "Plug-and-Play". Deploying the Plug-and-Play approach to such problems leads to an iterative scheme that repeats several key steps: 1) A convex programming task of simple form that can be easily treated; 2) A powerful Gaussian denoising algorithm of choice; and 3) A simple update step. Such a modular method, just like the Anscombe transform, enables other developers to plug their own Gaussian denoising algorithms to our scheme in an easy way. While the proposed method bares some similarity to the Anscombe operation, it is in fact based on a different mathematical basis, which holds true for all SNR ranges.

Citations (124)

Summary

We haven't generated a summary for this paper yet.