2000 character limit reached
On a class of $(δ+αu^2)$-constacyclic codes over $\mathbb{F}_{q}[u]/\langle u^4\rangle$ (1511.02369v1)
Published 7 Nov 2015 in cs.IT and math.IT
Abstract: Let $\mathbb{F}{q}$ be a finite field of cardinality $q$, $R=\mathbb{F}{q}[u]/\langle u4\rangle=\mathbb{F}{q}+u\mathbb{F}{q}+u2\mathbb{F}{q}+u3\mathbb{F}{q}$ $(u4=0)$ which is a finite chain ring, and $n$ be a positive integer satisfying ${\rm gcd}(q,n)=1$. For any $\delta,\alpha\in \mathbb{F}_{q}{\times}$, an explicit representation for all distinct $(\delta+\alpha u2)$-constacyclic codes over $R$ of length $n$ is given, and the dual code for each of these codes is determined. For the case of $q=2m$ and $\delta=1$, all self-dual $(1+\alpha u2)$-constacyclic codes over $R$ of odd length $n$ are provided.