Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Coupled Geometry Analysis for Neuronal Structure and Activity Pattern Discovery (1511.02086v1)

Published 6 Nov 2015 in q-bio.QM, q-bio.NC, and stat.ML

Abstract: In the wake of recent advances in experimental methods in neuroscience, the ability to record in-vivo neuronal activity from awake animals has become feasible. The availability of such rich and detailed physiological measurements calls for the development of advanced data analysis tools, as commonly used techniques do not suffice to capture the spatio-temporal network complexity. In this paper, we propose a new hierarchical coupled geometry analysis, which exploits the hidden connectivity structures between neurons and the dynamic patterns at multiple time-scales. Our approach gives rise to the joint organization of neurons and dynamic patterns in data-driven hierarchical data structures. These structures provide local to global data representations, from local partitioning of the data in flexible trees through a new multiscale metric to a global manifold embedding. The application of our techniques to in-vivo neuronal recordings demonstrate the capability of extracting neuronal activity patterns and identifying temporal trends, associated with particular behavioral events and manipulations introduced in the experiments.

Citations (41)

Summary

We haven't generated a summary for this paper yet.