Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Exponential inequalities for unbounded functions of geometrically ergodic Markov chains. Applications to quantitative error bounds for regenerative Metropolis algorithms (1511.01752v2)

Published 5 Nov 2015 in math.ST and stat.TH

Abstract: The aim of this note is to investigate the concentration properties of unbounded functions of geometrically ergodic Markov chains. We derive concentration properties of centered functions with respect to the square of the Lyapunov's function in the drift condition satisfied by the Markov chain. We apply the new exponential inequalities to derive confidence intervals for MCMC algorithms. Quantitative error bounds are providing for the regenerative Metropolis algorithm of [5].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)