Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Top-down Tree Long Short-Term Memory Networks (1511.00060v3)

Published 31 Oct 2015 in cs.CL and cs.LG

Abstract: Long Short-Term Memory (LSTM) networks, a type of recurrent neural network with a more complex computational unit, have been successfully applied to a variety of sequence modeling tasks. In this paper we develop Tree Long Short-Term Memory (TreeLSTM), a neural network model based on LSTM, which is designed to predict a tree rather than a linear sequence. TreeLSTM defines the probability of a sentence by estimating the generation probability of its dependency tree. At each time step, a node is generated based on the representation of the generated sub-tree. We further enhance the modeling power of TreeLSTM by explicitly representing the correlations between left and right dependents. Application of our model to the MSR sentence completion challenge achieves results beyond the current state of the art. We also report results on dependency parsing reranking achieving competitive performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xingxing Zhang (65 papers)
  2. Liang Lu (42 papers)
  3. Mirella Lapata (135 papers)
Citations (101)

Summary

We haven't generated a summary for this paper yet.