Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Solution of second order hyperbolic telegraph equation via new Cubic Trigonometric B-Splines Approach (1510.09051v1)

Published 30 Oct 2015 in math.NA

Abstract: This paper presents a new approach and methodology to solve the second order one dimensional hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions using the cubic trigonometric B-spline collocation method. The usual finite difference scheme is used to discretize the time derivative. The cubic trigonometric B-spline basis functions are utilized as an interpolating function in the space dimension, with a weighted scheme. The scheme is shown to be unconditionally stable for a range of values using the von Neumann (Fourier) method. Several test problems are presented to confirm the accuracy of the new scheme and to show the performance of trigonometric basis functions. The proposed scheme is also computationally economical and can be used to solve complex problems. The numerical results are found to be in good agreement with known exact solutions and also with earlier studies.

Summary

We haven't generated a summary for this paper yet.