Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CONQUER: Confusion Queried Online Bandit Learning (1510.08974v1)

Published 30 Oct 2015 in cs.LG and stat.ML

Abstract: We present a new recommendation setting for picking out two items from a given set to be highlighted to a user, based on contextual input. These two items are presented to a user who chooses one of them, possibly stochastically, with a bias that favours the item with the higher value. We propose a second-order algorithm framework that members of it use uses relative upper-confidence bounds to trade off exploration and exploitation, and some explore via sampling. We analyze one algorithm in this framework in an adversarial setting with only mild assumption on the data, and prove a regret bound of $O(Q_T + \sqrt{TQ_T\log T} + \sqrt{T}\log T)$, where $T$ is the number of rounds and $Q_T$ is the cumulative approximation error of item values using a linear model. Experiments with product reviews from 33 domains show the advantage of our methods over algorithms designed for related settings, and that UCB based algorithms are inferior to greed or sampling based algorithms.

Summary

We haven't generated a summary for this paper yet.